DIGEM f 96 x 48 EK

- Front panel dimensions: $96 \times 48 \mathrm{~mm}$
- LED display: red or green, 14 mm high
- Max. display range: - 19999 to +32765
- Modular connectors for flexible use
- Simple adjustments at front panel keys
- Up to 4 limit values possible as option
- Adaptable to customer specific characteristic curves
- Addition or subtraction of 2 measurement values
- Multiplication or division of 2 measurement values
- Automatic taring
- Automatic balancing for pressure measurements
- Storage of minimum and maximum measurement values
- Power supply electrically isolated from measuring circuit
- Complies with IEC 1010
- Housing suitable for rack mounting
- Analog output available as option

Applications

The DIGEM $\mathrm{f} 96 \times 48$ EK is a precision, modular rack mount instrument which can be adapted to specific measuring tasks through the use of a wide variety of various measuring modules. Scaling and set-points can be easily adjusted with the keys at the front panel, even after the instrument has been installed.
The range of applications can also be expanded with extra functions, so that the measuring instrument can be adapted to the task at hand in an ideal fashion.
The instrument can be equipped to perform the following measurements:

- Direct current and direct voltage
- Sinusoidal alternating current and alternating voltage
- Alternating current and alternating voltage, RMS
- Temperature
- Frequency and r.p.m.
- Pressure
- Pulse counting
(see page 3, chapter 11 for function and mode of operation)
- Display in $\cos \varphi$
- Non-linear input quantities

DIGEM f 96 x 48 EK

The settings for these functions are secured at the factory against change with a separate switch at the backside of the front panel. Preset values remain in storage even if a mains failure occurs. The MESSCONTACTER model provides for the selection of a maximum of four limit values. The alarm circuit is equipped with relays.
The switching condition of the relays is also indicated by means of LEDs. Indication of an alarm condition can be indicated optically by means of a blinking display for all limit values.
This model also includes the following features:

- Adjustable switching hysteresis
- Adjustable response delay for limit values
- Storage of alarm messages

Applicable Regulations and Standards

IEC 1010-1	Safety requirements for electrical equipment for measurement, control and laboratory use
EN 50022	Class B interference suppression
IEC 801-2 through 5	EMC interference immunity
DIN 40040	Utilization category and reliability data for telecommunications and electronic components

Programming

Each measuring instrument is programmed at the factory according to customer requirements. Subsequent reprogramming is also possible without removing the instrument from its rack. All programmed values remain in memory even if a mains failure occurs.

Function and Mode of Operation for Extra Functions

1. Storage of Minimum and Maximum Values

The three different versions of this instrument are programmed as follows:
a) MIN-MAX Memory

Display of current measurement value and storage of minimum and maximum values to memory
b) Maximum Value Display

Display of the maximum value and storage of the minimum value to memory
c) Minimum Value Display

Display of the minimum value and storage of the maximum value to memory
Stored values can be queried by activating the 仓 and n keys.

2. Automatic Taring

An input quantity is measured and stored to memory by pressing the " P " key. The measuring instrument displays the difference of the current measurement value minus the stored input quantity.

3. Addition and Subtraction of Measurement Values

The measuring instrument can be equipped at the factory with two measurement inputs for DC measuring ranges. Depending upon which option has been selected, this version of the instrument displays either the sum or the difference of the two measurement values.

4. Multiplication and Division of Measurement Values

The measuring instrument can multiply or divide two values from the DC measuring ranges. This version of the instrument is equipped at the factory with two measuring inputs
The following value is displayed for multiplication $\mathrm{U} 1 \times\left(\frac{\mathrm{U} 2}{20000}\right)$. The following value is displayed for division $\frac{(U 1 \times 20000)}{U 2}$.

5. Rounding and Mean-Value Generation

If legibility of the display is impaired by continuously fluctuating input quantities, the last place of the measurement value can be rounded in steps of either 2,5 or 10. Mean-value generation can also be selected.

6. Tendency Display

The function of the two LEDs used for alarm signals can be reconfigured such that rising or falling tendencies for gradually changing measurement values can be detected and indicated (e.g. temperature).

7 Calibration

Matching of the display range to the input quantity can be accomplished in two different ways:
a) Digital selection of an offset quantity and a scaling factor.
b) By applying the lower and upper range values to the measurement input and directly adjusting the corresponding display . The display range can be conveniently matched to a nonlinear input signal by selecting one of the ten break points.

8. Automatic Balancing for Pressure Measurement

Automatic balancing is accomplished for pressure measurements by pressing the " P " key. After the " P " key has been activated, the instrument balances the lower limit of the effective range (e.g. zero). If the program key is activated again, the measuring span is also automatically balanced. The new values are stored to memory, and remain in memory even if a mains failure occurs.
9. Limit Values Option

Each measuring instrument can be equipped with two or four limit values.
Limit values LOL1 and HIL1 are each provided with a changeover contact for alarm messages. The other limit values, LOL2 and HIL2, are each provided with a normally open contact. The LOL2 contact is connected to the LOL1 contact as shown in the following diagram. The same applies to the HIL2 and HIL1 contacts.

The relays can be configured either for load current or closed-circuit current.
If the measurement value enters the alarm range, an alarm message is read out from the appropriate relay. All limit value violations are also indicated in an unambiguous fashion by means of LEDs at the same time.
If the measurement value drops back to below the alarm range, the alarm message is automatically cancelled. This function can be overridden with the alarm memory if required. In this case the alarm message remains active even after the measurement value has fallen below the alarm range, until cancellation has been acknowledged by pressing a key, or with an external signal applied at the hold input.
Switching hysteresis can be adjusted for the relay tripping limit values in steps of 1 from 0 to ± 127 digits. Alternatively, a response delay ranging from $0 \ldots 120 \mathrm{~s}$ can be selected. The mean value of the measurement values is calculated and compared with the limit values during this delay time.

10. Pulse Counter

If the "counter" function has been selected for the measuring instrument the overflow display "- ---" appears when the instrument is switched on.
The counter can be reset with the help of the $仓$ and $\sqrt{ }$ keys.
All pulses which occur at the measurement input are counted and stored to memory. The instrument can count up to 32,762 pulses. The value is displayed which results from multiplying the value in memory with the selected multiplication factor (0.0001 to 1.9999). The contents of the memory are deleted when the measuring instrument is switched off.

Dimensional Drawing

Connector Pin Assignments

Terminal 9 may not be connected to terminal 11 when supply voltage is on.

Resistance Thermometer

DIGEM f 96 x 48 EK

Characteristic Values

Display
Type

Color
Character Height
Display Range
Polarity
Overflow Display
Input
1 measuring range dependent upon measuring module
Max. voltage between measurement input and housing

7 segment LED
red / optionally green
14 mm
-19 999 to 32765
"-" is automatically displayed
"- - - - -"
see Order Information / ID Number
$250 \mathrm{~V}_{\text {eff }}$ for 700 VAC range, max. 1000 V

Error Limits for Basic Instrument without Measuring Module
Temperature Coefficient $<15 \mathrm{ppm} / \mathrm{K}$
Zero Point Drift
Non-Linearity
Series-Mode Rejection Ratio
< 0.005 \%
$>120 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$
Control Commands
Storage of Display Value
Reset
Lock Settings
Power Supply
Depending upon Model
Power Consumption
Ambient Conditions
Operating Temperature Range
Storage Temperature Range
Relative Humidity
Housing
Material
Front Dimensions
Panel Cutout
Bezel Height
Bezel Color

Installation Depth
Weight
Terminal Connectors
$0 \ldots 50^{\circ} \mathrm{C}$
externally controlled externally controlled externally controlled

230 V AC, 115 V AC max. 5 VA
$-20 \ldots+70^{\circ} \mathrm{C}$
max. 85%
metal half-shells
$96 \times 48 \mathrm{~mm}$
$45+0.6 \times 96+0.8 \mathrm{~mm}$ 5 mm
black, options: gray, light gray, pebble grey or dark beige max. 125 mm approx. 0.9 kg screw terminal blocks

Input Quantities from Measuring Modules
DC Voltage / Current
Voltage:

Input Resistance
Overload

Current:
Voltage Drop max. 2 V
Overload
Error Limits for DC Ranges
Temperature Coefficient
AC Voltage / Current
Voltage:
Input Resistance
Overload

Current:
Voltage Drop
Overload

Error Limits for AC Ranges:
$45 \ldots 65 \mathrm{~Hz}$
$20 \mathrm{~Hz} . .1 \mathrm{kHz}$
Temperature Coefficient
AC True RMS
Voltage:
Input Resistance
Overload

Current:
Voltage Drop
Overload

Error Limits for True RMS
$45 \ldots 65 \mathrm{~Hz}$
$20 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
Crest Factor
Temperature Coefficient
$>1 \mathrm{M} \Omega$
$>80 \mathrm{ppm} / \mathrm{K}$
$>1 \mathrm{M} \Omega$
max. 2 V
$>1 \mathrm{M} \Omega$
max. 2 V

10-fold (observe max. voltage for basic instrument)

2-fold, max. 300 mA
\pm ($0.05 \%+1$ digit)

10-fold (observe max. voltage for basic instrument)

2-fold, max. 300 mA for $1 \mathrm{~A} \& 5 \mathrm{~A}$: 30 -fold for 1 sec .
$\pm(0.2 \%+0.2 \%$ of meas. range $)$
$\pm(0.2 \%+0.2 \%$ of meas. range $)$
$0.01 \%+0,01 \mathrm{mV} / \mathrm{K}$

10-fold (observe max. voltage for basic instrument)

2-fold, max. 300 mA for 1 A \& 5 A: 30 -fold for 1 sec .

Temperature Measurement with Pt100
Current at the Sensor 2 mA
Max. Error $\quad<0.5^{\circ} \mathrm{C}$
Temperature Coefficient $<150 \mathrm{ppm} / \mathrm{K}$
Offset Drift <0.1 digit
Temperature Measurement with Thermocouples
Linearization Error $<1 \mathrm{~K}$
Cold Spot Compensation Error $<2 \mathrm{~K} / 10 \mathrm{~K}$ for $10 \ldots 50^{\circ} \mathrm{C}$
Broken Cable Display "- - -"
Temperature Coefficient $<150 \mathrm{ppm} / \mathrm{K}$
Offset Drift <0.1 digit

Frequency and R.P.M. Measurement

For ranges to 500 Hz	
Resolution	0.1 Hz
Measurement Duration	$<300 \mathrm{~ms}$
Error Limits	$<0,15 \mathrm{~Hz}$
For ranges $>500 \mathrm{~Hz}$	
Error Limits	± 1 digit
Time Base	$\pm 50 \mathrm{ppm}$
Temperature Coefficient	<2 ppm/K

Optional Relays
for LOL1 and HIL1
for LOL2 and HIL2
Switching Time
Switching Hysteresis
Time Delay
Switching Capacity

Order Information

Features		ID Number
DIGEM f 96×48 EK	Measuring Instrument	A1262
LED Display	red (standard)	-
	green	A1
Limit Values		
	without limit values	CO
2 Limit Values		
Load Current Version	min.-max. contact	C1
	min.-max. contact	C2
	min.-max. contact	C3
Closed-Circuit Current Version	min.-max. contact	C4
	min.-max. contact	C5
	min.-max. contact	C6
4 Limit Values		
Load Current Version	min. min.-max. max. contact	C7
	min. min.-min. min. contact	C8
	max. max.-max. max. contact	C9
Closed-Circuit Current Version	min. min.-max. max. contact	C10
	min. min.-min. min. contact	C11
	max. max.-max. max. contact	C12
Measuring Ranges		
Direct Current 1 Measurement Value	$\pm 2 \mathrm{~mA}$	D001
	$\pm 20 \mathrm{~mA}$	D002
	$\pm 200 \mathrm{~mA}$	D003
	0 ... 20 mA	D004
	4 ... 20 mA	D005
	$\pm 1 \mathrm{~A}$	D006
	$\pm 2 \mathrm{~A}$	D007
	$\pm x \mathrm{~mA}$	D900
	$0 \ldots \mathrm{xx} \mathrm{mA}$	D901
	$4 \ldots 20 \mathrm{~mA}$ with power supply for 2 -wire measuring transducer	D008
Direct Voltage 1 Measurement Value	$\pm 2 \mathrm{~V}$	D010
	$\pm 20 \mathrm{~V}$	D011
	$\pm 200 \mathrm{~V}$	D012
	$0 \ldots 10 \mathrm{~V}$	D013
	$\pm x x \mathrm{~V}$ (min. 2 V , max. 250 V)	D910
	$0 \ldots \mathrm{xx} \mathrm{V}$	D911
At Shunt Resistor	$\pm 60 \mathrm{mV}$	D015
	$\pm 150 \mathrm{mV}$	D016
Direct Voltage / Current 2 Measurement Values	$\begin{aligned} & \text { U1: } \pm x x \text { V; U2: xx V } \\ & (\min .2 \mathrm{~V}, \max .20 \mathrm{~V}) \end{aligned}$	D960
	I1: $\pm x x \mathrm{~mA} ; 12: x \mathrm{~mA}$ (min. $2 \mathrm{~mA}, \max .20 \mathrm{~mA}$)	D961
	11:4 ... $20 \mathrm{~mA} \quad 12: 4 \ldots 20 \mathrm{~mA}$	D962
Alternating Current, Sinusoidal	$0 \ldots 2 \mathrm{~mA}$	D021
	0 ... 20 mA	D022
	$0 . . .200 \mathrm{~mA}$	D023
	0 ... xxx mA (max. 200 mA)	D920
	0... 1 A	D027
	$0 \ldots 5 \mathrm{~A}$	D028
Alternating Voltage, Sinusoidal	0... 2 V	D031
	0... 20 V	D032
	$0 \ldots \mathrm{xx}$ V	D923
	0 ... 200 V	D037
	0 ... 700 V	D038

DIGEM f 96 x 48 EK

Features		ID Number
Measuring Ranges		
Alternating Current, True RMS	$0 \ldots 2 \mathrm{~mA}$	D200
	0 ... 20 mA	D201
	0 ... 200 mA	D202
	0 ... xxx mA (max. 200 mA)	D930
	0... 1 A	D207
	$0 \ldots 5 \mathrm{~A}$	D208
Alternating Voltage, True RMS	$0 \ldots 2 \mathrm{~V}$	D210
	0... 20 V	D211
	0 ... 200 V	D212
	0 ... 700 V	D213
	0 ... xx V (min. 2 V , max. 200 V)	D933
Temperature, Pt100		
3 -wire connection	- $200.0 \ldots+800.0^{\circ} \mathrm{C}$	D062
	$-328 \ldots+1473^{\circ} \mathrm{F}$	D064
2 / 4-wire connection	- $200.0 \ldots+800.0^{\circ} \mathrm{C}$	D063
	$-328 \ldots+1473{ }^{\circ} \mathrm{F}$	D065
Thermocouples		
Type J (Fe-CuNi)	$-0 \ldots+760^{\circ} \mathrm{C}$	D310
	$-32 \ldots+1260^{\circ} \mathrm{F}$	D311
	$-190 \ldots+1300^{\circ} \mathrm{C}$	D320
	$-310 \ldots+2300^{\circ} \mathrm{F}$	D321
	$0 \ldots 1600^{\circ} \mathrm{C}$	D330
	32 ... $2900{ }^{\circ} \mathrm{F}$	D331
	$0 \ldots 1600^{\circ} \mathrm{C}$	D340
	$32 . . .290^{\circ} \mathrm{F}$	D341
Resistance		
$0 . . .10,000 \Omega$	2-wire connection	D081
	3 -wire connection	D082
	4 -wire connection	D083
0 ... 2000Ω	2-wire connection	D084
	3 -wire connection	D085
	4-wire connection	D086
0... 200Ω	2-wire connection	D087
	3 -wire connection	D088
	4-wire connection	D089
Frequency		
5.0 ... 100.0 ... 500.0 Hz , voltage level $5 \ldots 30 \mathrm{~V}$		D052
0 ... 2.000 kHz , voltage level $5 . . .30 \mathrm{~V}$		D054
$0 \ldots 20.000 \mathrm{kHz}(5 . . .30 \mathrm{~V})$		D056
0 ... $200.00 \mathrm{kHz}(5 . .330 \mathrm{~V})$		D058
$5.0 \ldots 100.0 \ldots 500.0 \mathrm{~Hz} \mathrm{90}-360 \mathrm{~V}$		D050
0 ... $2000.0 \mathrm{~Hz}(90 . . .360 \mathrm{~V})$		D051
5.0 ... 100.0 ... 500.0 Hz (open collector)		D053
0 ... 2000.0 Hz (open collector)		D055
0 ... 20.000 kHz (open collector)		D057
For Pressure Sensors		
xx, x mV / V (min. $2 \mathrm{mV} / \mathrm{V}$, max. $20 \mathrm{mV} / \mathrm{V}$)		D990
Pulse Counter - Voltage Level $5 . . .30 \mathrm{Vss}$		
Up-counter - xxx pulses per digit		D950
Down-counter - xxx pulses per digit		D951

Features	ID Number
Measurement Value Logic Operations	
Only possible with 2 measurement inputs	
Display = U1 + U2 or. $11+\mathrm{I} 2$	DV1
Display = U1-U2 or. I1-I2	DV2
Display $=(\mathrm{U} 1 \times 20000) / \mathrm{U} 2$	DV3
Display = U1 x (U2 / 20 000)	DV4
Display Range	
Same as measuring range at max. resolution (standard)	-
$\pm x x x x$, as requested	E091
$0 \ldots \mathrm{xxxx}$, as requested	E092
xxx ... xxxx , as requested	E093
1: $x x x \ldots x x x \quad 2: x x x \ldots x x x$, as requested	E094
Display	
With linear relationship to input quantity (standard)	-
non-linear relationship to input quantity (as requested, max. 10 break points	EA9
$\cos \varphi$	EA1
with automatic taring (display = current measurement value - tare value)	EA2
Decimal Points	
Same as measuring range at max. resolution (standard)	-
no decimal point	ED1
xxxx. X	ED2
Xxx. XX	ED3
Xx. XXX	ED4
x. XXXX	ED5
Measured Quantity Designation	
Same as measuring range (standard)	-
with no measured quantity labelling	EM1
see table EM on page 5 for measured quantities	EM . .
measured quantity labelling as requested	EM90
Supply Voltage	
$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	H1
$110 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	H2
Analog Output (only in combination with C1)	
No analog output	-
0 ... 20 mA (for display range: xxx ... xxx)	K90
4 ... 20 mA (for display range: $\mathrm{xxx} . . . \mathrm{xxx}$)	K91
0 ... 10 V (for display range: $\mathrm{xxx} . . . \mathrm{xxx}$)	K92
1 ... 5 V (for display range: $\mathrm{xxx} . . . \mathrm{xxx}$)	K93
as requested	K99
Mean Value Display	
No mean value generation	-
mean value from 2 measurements	M1
mean value from 4 measurements	M2
mean value from 8 measurements	M3
mean value from 16 measurements	M4
mean value from 32 measurements	M5
Rounding of the Last Place	
No rounding	-
round in steps of 2	MA1
round in steps of 5	MA2
round in steps of 10	MA3
Switching Hysteresis	
No switching hysteresis	-
with switching hysteresis (enter max. number of digits in clear text)	MD91
with response delay (enter number of seconds in clear text)	MD92

Features	ID Number
Memory	
No memory	-
storage of minimum and maximum values	N2
maximum value display	N3
minimum value display	N4
store alarm messages to memory	
Bezel	•
Black, matt	P1
gray, matt RAL 7037	P2
pebble gray, matt RAL 7032	P3
light gray, matt RAL 7035	P4
dark beige, matt	

Features	ID Number
Front Panel	
GOSSEN-METRAWATT design	•
design as requested	PD..
Mounting	•
DIN screw clamps	RM1
manual slot-mount	
Rear Panel Identification	•
No identification	
with identification (enter in clear text)	•
Additional Labelling	TA92
No additional labelling (standard)	
with labelling at top (max. 15 characters)	

DIGEM f 96×48 EK

